Forum

Manuscripts on this dataset

  1. CMS Manager

    Manuscripts on this dataset, "ds003478"
  2. CMS Manager

    1. НН Шушарина, Методика сбора, записи и разметки биофизических мультимодальных данных при исследовании психоэмоциональных состояний человека, Известия Саратовского университета. Новая серия. Серия Физика, 2024, Cited by 0, https://cyberleninka.ru/article/n/metodika-sbora-zapisi-i-razmetki-biofizicheskih-multimodalnyh-dannyh-pri-issledovanii-psihoemotsionalnyh-sostoyaniy-cheloveka
    2. C Peres da Silva, S Tedesco, B O'Flynn, EEG datasets for healthcare: A scoping review, 2024, Cited by 0, https://cora.ucc.ie/items/e4c14a93-4db4-4788-852e-1c9e44132270
    3. E Tatti, A Cinti, A Serbina, A Luciani, G D'Urso, Resting-State EEG Alterations of Practice-Related Spectral Activity and Connectivity Patterns in Depression, Biomedicines, 2024, Cited by 0, https://www.mdpi.com/2227-9059/12/9/2054
    4. NN Shusharina, Methodology of collection, recording and markup of biophysical multimodal data in the study of human psychoemotional states, Izvestiya of Saratov University. Physics, 2024, Cited by 0, https://journals.rcsi.science/1817-3020/article/view/265415
    5. НН ШУШАРИНА, Учредители: Саратовский национальный исследовательский государственный университет им. НГ Чернышевского, ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ, 2024, Cited by 0, https://elibrary.ru/item.asp?edn=EOIBSY
    6. NN Shusharina, Efficiency of convolutional neural networks of different architecture for the task of depression diagnosis from EEG data, Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, Cited by 0, https://journals.rcsi.science/0869-6632/article/view/260946
    7. НН Шушарина, Эффективность сверточных нейронных сетей различной архитектуры для задачи диагностики депрессии по данным ЭЭГ, Известия высших учебных заведений. Прикладная нелинейная динамика, 2024, Cited by 0, https://cyberleninka.ru/article/n/effektivnost-svertochnyh-neyronnyh-setey-razlichnoy-arhitektury-dlya-zadachi-diagnostiki-depressii-po-dannym-eeg
    8. CP Da Silva, S Tedesco, B O'Flynn, EEG datasets for healthcare: a scoping review, IEEE Access, 2024, Cited by 2, https://ieeexplore.ieee.org/abstract/document/10466559/
    9. D Sihn, JS Kim, OS Kwon, SP Kim, Breakdown of long-range spatial correlations of infraslow amplitude fluctuations of EEG oscillations in patients with current and past major depressive disorder, Frontiers in Psychiatry, 2023, Cited by 5, https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1132996/full
    10. G Luo, H Rao, P An, Y Li, R Hong, Exploring adaptive graph topologies and temporal graph networks for EEG-based depression detection, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, Cited by 3, https://ieeexplore.ieee.org/abstract/document/10268256/
    11. J Chang, Y Choi, Depression diagnosis based on electroencephalography power ratios, Brain and Behavior, 2023, Cited by 8, https://onlinelibrary.wiley.com/doi/abs/10.1002/brb3.3173
    12. X Sun, Y Xu, Y Zhao, X Zheng, Multi-Granularity Graph Convolution Network for Major Depressive Disorder Recognition, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, Cited by 1, https://ieeexplore.ieee.org/abstract/document/10238750/
    13. N Shusharina, D Yukhnenko, S Botman, V Sapunov, Modern methods of diagnostics and treatment of neurodegenerative diseases and depression, Diagnostics, 2023, Cited by 33, https://www.mdpi.com/2075-4418/13/3/573
    14. N Draudt, BATS: Development of a Biosignal Analysis Toolkit and Pipeline for Polytrauma Research, 2022, Cited by 0, https://digital.wpi.edu/downloads/5t34sp28g
    15. NP Tigga, S Garg, Efficacy of novel attention-based gated recurrent units transformer for depression detection using electroencephalogram signals, Health Information Science and Systems, 2022, Cited by 13, https://link.springer.com/article/10.1007/s13755-022-00205-8
    16. V Savinov, V Sapunov, N Shusharina, Research and selection of the optimal neural network architecture and parameters for depression classification using harmonized datasets, 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN), 2022, Cited by 1, https://ieeexplore.ieee.org/abstract/document/9912567/
    17. C Hung, The Impact of Cross-Validation on the Automated EEG-Based Diagnosis, 2022, Cited by 0
    18. L Minkowski, Classifying Severity of Depression and Anxiety by Analyzing Electroencephalography (EEG) Signals for Neurophysiological Biomarkers, 2021, Cited by 0, https://rshare.library.torontomu.ca/ndownloader/files/43269018
    19. V Savinov, V Sapunov, N Shusharina, EEG-based depression classification using harmonized datasets, 2021 Third International Conference Neurotechnologies and Neurointerfaces (CNN), 2021, Cited by 4, https://ieeexplore.ieee.org/abstract/document/9580293/
    20. Y Zhou, X Yu, H Lin, R Li, J Liang, X Shi, Depression Severity Identification Based on Shallow 2d Self-Attention-Cnn Using Eeg Functional Connectivity Network, Available at SSRN 4813480, Cited by 0, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4813480

Add Post

User photo

You must be logged in to comment.

Please keep comments polite and on topic. Offensive posts may be removed.